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A study is made of the transient flow which results from the impingement of a 
plane shock on a blunt body. The analysis is based on Taylor-series expansions 
in the space and time variables of the flow properties and of the shape of the 
reflected shock. Coefficients of the series are determined numerically so as to 
satisfy the exact equations of motion and shock jump conditions. Convergence 
problems are ameliorated by recasting the series into continued fractions. 
While the analysis does not treat the transition from regular to Mach reflexion, 
it remains valid for all time in the subsonic region of the flow if the incident 
shock is sufficiently strong. In  any case, it is accurate enough where it is valid 
to be useful for evaluation of more conventional numerical methods. 

1. Introduction 
The diffraction of a shock wave by a stationary body is a problem of some 

interest in connexion with the blast-wave loading of ground structures and with 
the starting of shock tubes and tunnels. However, most theoretical treatments 
are restricted to problems with conical symmetry (Pack 1964). Here our object 
is to predict the pressure distribution on smooth blunt bodies for as long as 
possible after the arrival of the incident shock. Thus, the only comparable work 
extant is Barnwell’s (1967) recent numerical solution for the diffraction of a 
plane shock about a sphere. 

Barnwell uses a finite-difference method similar to the well-known procedure 
of Lax (1954). Such methods account automatically for the presence of shocks 
and other discontinuities by (in effect) considering them to be regions in which 
the flow properties experience large but finite gradients and by applying the 
same difference equations within those regions as without. While the occurrence 
of Mach redexion thus presents no particular computational difficulties to 
Barnwell, his results for the pressure on the body are naturally suspect in the 
initial stages of the diffraction, when the smeared-out reflected shock is still 
quite close to the body. 

The present solution is also numerical, but treats the shocks as discontinuities. 
Results are obtained in the form of Taylor series in the space variables and time, 
the coefficients being determined from the exact three-dimensional conservation 
equations and boundary conditions. Using a computer, we obtain enough terms 
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of the series to give us great confidence in the accuracy of our results, at  least up 
to the time at which Mach reflexion occurs. Beyond this time our method 
furnishes only an incomplete picture of the flow field. If the incident shock is 
sufficiently strong, the solution is valid in principle for all time t near the stagna- 
tion point. However, for many practical purposes the present method can be 
used only as a supplement to more conventional numerical procedures like 
Barnwell’s, in which case its role is to supply accurate data where they are unable 
to do so. 

2. Determination of series solution 
The problem we consider is the diffraction of a plane shock wave about a rigid 

stationary body, as illustrated in figure 1. The gas is assumed perfect. For 
simplicity we take the body to be either plane or rotationally symmetric about 

0 

shock 

FIGURE 1. Co-ordinates and nomenclature. Numbers are used to identify flow regions 
defined by shock and body contours. 

an axis normal to the incident shock. We also require that the body shape be 
analytic and so to have a power series expansion of the form 

The shape of the reflected shock is then assumed to have the expansion 

xr = x I; x r ( j ,  Ic)r2jtk, 
j = O  k = O  

where the time t is measured from that a t  which the incident shock hits the body, 
while each flow property A (say) is expanded as follows: 

A = .x 2 x A(i , j , Ic ) (x-xr) i r2 i tk .  (3) 
2 = 0 j = O k = O  

t In actuality, of course, the accuracy of the results deteriorates with increasing time. 
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Expansion in powers of (x - 5,) rather than of x simplifies satisfaction of the 
shock jump conditions. 

Given the properties of the undisturbed fluid (region 1 of figure 1) and the 
pressure ratio p2/pl across the incident shock, we can easily find the speed of 
that shock and the flow properties behind it (region 2) from the Rankine- 
Hugoniot shock jump conditions. With the body shape prescribed in the form 
(1)) the problem is then to find the coefficients of the series (2) and (3) so as to 
satisfy the equations which govern the flow between the reflected shock and the 
body (region 3 of figure 1). These consist of the usual partial differential equations 
of inviscid flow, the jump conditions across the reflected shock, the condition of 
no flow through the body surface, and a geometric condition that the incident 
and reflected shocks meet the body at  the same point, namely 

E t  = xb = x, at r = ri ( t )  (say). (4) 

Since this condition i s  valid only while the reflexion is regular, our analysis 
breaks down when Mach reflexion occurs, to an extent which will be discussed 
in $4. 

On substituting the various series into the governing equations and equating 
terms of like order in the independent variable, we obtain recursion formulas 
for the series coefficients. The details of deriving and of working with these 
formulas are very much the same as in the related shock-on-shock problem 
(Moran 1969). Suffice it to say here that the coefficients must be determined 
recursively according to their total order (i + j  for the coefficients x,(i,j), i + j  -k k 
for A(i , j ,  k) ). That is, we can find coefficients of total order N only after finding 
all those of total order N - 1.  

3. Utilization of series 

Once the coefficients are available, we may attempt to use the series to cal- 
culate quantities of interest. Where the series converge, they may be used directly, 
with the accuracy of the results being estimated by examining various trunca- 
tions of the series. However, as in related problems (Van Dyke 1958, Moran 1969), 
the regions in which series of interest converge are often limited by the occur- 
rence of spurious singularities. For example, the series for the standoff distance 
of the reflected shock x,(O,t) clearly (by the ratio test or by Domb’s (1965) 
method) contains an isolated singularity at  a certain negative time t*, so that 
the series diverges for t > - t * .  

Fortunately, methods have become available in recent years for the numerical 
construction of an analytic continuation of a power series beyond its basic region 
of convergence. Leavitt (1968) obtains excellent results for the inverse blunt- 
body problem by transforming the independent variable so as to obtain a more 
favourable location of the singularities of the series relative to the region of 
interest. An alternative procedure, which does not require any knowledge of the 
nature or location of the convergence-limiting singularities, is to recast the series 
into continued-fraction form. This method also works quite well in the blunt- 
body problem (Van Dyke 1966; Van Tuyl1960, 1967; Moran 1969). In addition, 
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it  has been applied to the shock-on-shock problem (Moran 1969)) and it will be 
used here as well. 

The first step in our procedure is to convert the two- and three-dimensional 
series of interest into one-dimensional forms suitable for re-expansion as con- 
tinued fractions. This we do by restricting our attention to curves (x-x,)/t = 

constant, r2/t = constant. Rewriting series like (2) and (3) in the forms 

k k - i  

A = k=O c [ i = O j = O  c ~ ( i , j , k - i - j ) { ( x - x r ) / t ~ { r 2 / t ~ ]  tk,  (6) 

we fix (x-x,)/t and r2/t and evaluate the polynomials in square brackets, thus 
obtaining power series in the single variable t. An advantage of this procedure 
over alternative approaches (see, e.g. Van Tuyl 1960, 1967) is that the co- 
efficients of these series are not themselves infinite series, but only polynomials. 
Moreover, the coefficients of tk in (5) and (6) are linear combinations of all those 
coefficients of the associated original series (2) or (3) of total order k. Since the 
coefficients of (2) and (3) are determined recursively according to their total order, 
it is easy to arrange the calculations so that the coefficients of tk in (5) and (6) 
are known precisely; that is, within the limits of machine roundoff, but with no 
truncation error, up to the point a t  which those one-dimensional series are trun- 
cated. 

Now, to any power series in one variable 

f ( t )  = a,+a,t+a,t2+ . . ., ( 7 )  

there corresponds a continued fraction 

b" 
1 +  b,t 

l+b,t  (8) 
1 + ... 

whose coefficients b, are determined uniquely in terms of a,, . . ., a, by the re- 
quirement that the power-series expansion of (8) about t = 0 agrees with the 
right side of (7).  An efficient numerical procedure for finding the b,'s is the so- 
called quotient-difference algorithm (Henrici 1963). 

It can be shown (Wall 1948, Shanks 1955) that, both when the functionf(t) 
is meromorphic and (at least in the special cases that have been examined in 
detail) when it has branch-point singularities, the continued-fraction expansion 
off converges well beyond the circle of convergence of the corresponding power- 
series expansion. Indeed, in the case of interest, where t is real and positive, 
our experience seems to indicate that the continued-fraction expansion of 
f will converge almost everywhere up to the smallest real positive t a t  whichf 
has a branch point. 

However, convergence per se of the continued-fraction expansion of the 
solution is not enough for our purpose; we must have rapid convergence. We are 
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required to truncate our series fairly early by, first of all, machine capacity. 
Using an IBM 360165, we are able to compute only coefficients of total order 
< 13. Moreover, since the number of computations required to obtain a given 
coefficient is a rapidly increasing function of its total order, the higher-order 
coefficients are both expensive t o  obtain and subject to relatively large roundoff 
errors. 

Some evidence of the convergence of the continued-fraction expansions is 
given in table 1, which compares results obtained from various truncations of 
the series solution for the standoff distance of the reflected shock at  various 
times. As would be expected, the rate of convergence slows down with increasing 
time. However, since the power series used to form the relevant continued 
fraction was found to diverge at  t N 0-31, it can be seen that recasting the series 
has greatly extended its utility. 

Time Number of terns retained in series solution 
11 12 13 14 

0.2 - 0.0618346 t 

0.5 - 0'1306775 -+ 
1-0 - 0.2091 940 -0'2091956 - 0.2091923 - 0.2091906 
2.0 - 0'3003532 - 0'3003761 - 0'3002453 - 0.3000487 
4.0 -0'3836319 - 0'3839854 - 0.3829306 - 0.3898388 
8.0 - 0.441 5498 - 0.4441937 - 0.4374649 -0.4522185 

TABLE 1. Results obtained from successive truncations of series solution for 
z,(O, t )  in case 1 of table 2.  

It should be emphasized that the time beyond which even a recast series 
becomes useless varies greatly from one series to the next. For an extreme ex- 
ample, the series for the flow properties in the immediate vicinity of the point 
at  which the reflected shock meets the body become singular when the regular 
reflexion pattern depicted in figure 1 becomes impossible. Thus, the correspond- 
ing continued-fraction expansions also diverge beyond that time,t which is 
about 0.23 for the case to which the data of table 1 refer, or only a few per cent 
of the time for which the recast series yields reliable data on the standoff distance. 

Because of this variability in the utility of the different series, their predic- 
tions were accepted only if three out of four successive truncations of the series 
gave results which were indistinguishable on a convenient graphical scale. In  
one instance this criterion resulted in the rejection of our highest-order results 
in favour of some of lower order. As can be seen in figure 5, using all 14 terms of 
the continued-fraction expansion of the standoff distance in one case (the 
same case dealt with in table 1) seemed to suggest the presence of a singularity 
in q ( 0 ,  t )  at t N 3.0. Of course, such behaviour is completely spurious. It is due 

t Where these expansions do converge, however, they are in excellent agreement with 
results of a separate local analysis of the flow properties behind a regularly reflecting 
shock. Since the expansions involve, through the recursion formulas used to generate the 
Taylor-series solution, all the coefficients of all the series, this agreement gives us oon- 
fidence in the correctness of our solution elsewhere as well. 

9-2 
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only to roundoff errors accumulated in calculating the coefficients of the con- 
tinued-fraction expansion of x, (0, t ) .  Whether these errors simply introduce a 
negative coefficient into the continued fraction or whether they cause a mis- 
representation of a removable singularity in the exact expansion is not known. 
However, reasonable results for x, (0, t )  were obtained if its continued-fraction 
expansion was truncated a t  13, 12 or 11 terms. Since those results were in sub- 
stantial agreement among themselves (see also table l), they were plotted in 
spite of the behaviour of the ‘best’ result. 

4. Results 
Calculations were made for the four cases described in table 2. I n  all cases the 

specific heat ratio was taken to be 1.4. Case 1 was selected for comparison with 
Barnwell’s (1967) numerical results. The two cylinder cases were to have been 
compared with Bogoslavskii’s (1966) experimental data; unfortunately, real-gas 
effects in the experiments were too strong to permit any meaningful comparisons. 

Case P,/P, Body M ,  t* 

1 35.77 Sphere 1.69994 0.23044 
2 36.42 Circular cylinder 1.70300 0.23049 
3 1.25 Sphere 0.15694 0.39451 
4 2.485 Circular cylinder 0.60430 0.24575 

TABLE 2. Identification of cases studied. M ,  = Mach number of the ultimate steady 
flow set up as time goes to infinity, while t* = time at which regular reflexion becomes 
impossible, in units of the time required for the incident shock to move a length equal 
to the body radius. 

Figures 2 and 3 give the pressure distributions on the body and on the axis of 
symmetry, respectively, at various times in the initial stages of the flow develop- 
ment for case 1 .  Similar results were obtained in the other cases. Time histories 
of the stagnation-point pressure and of the standoff distance of the reflected 
shock on the axis of symmetry are plotted for the various cases in figures 4 and 5. 
As noted previously, comparisons among the results obtained using various 
numbers of terms of the series solution lead us to believe that the truncation and 
roundoff errors of our results are negligible on the scales of these figures. 

Also shown in figures 2-5 are some of Barnwell’s (1967) numerical results 
for case 1. He uses finite-difference equations which take no particular notice 
of the presence of shocks in the flow field but which contain, in effect, viscous- 
like terms which smear out the discontinuities over several mesh widths. By 
changing the set of equations a t  alternate time steps, he is able to keep this 
smearing effect smaller than is usual, but he cannot entirely eliminate it. Thus, 
as is shown quite clearly in figures 2-4, his results for the pressure on the body are 
in considerable error for small times, but improve in accuracy as the smeared- 
out shock moves away from the body. Barnwell’s results for the reflected-shock 
standoff distance, however, are in good agreement with ours even for short times. 
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FIGURE 2. Pressure distribution on body at various times (case 1) .  Pressure made dimen- 
sionless with value of pu2 in region 2, distances with body radius R B ,  times with time 
required for incident shock to wave distance equal to RB. Barnwell's (1967) results: 
0, t = 0.114; A ,  t = 0.469; 0, t = 1.483. 

X 

FIGURE 3. Pressure distribution on axis of symmetry at  various times (case 1). 
Solid curves from present results, dashed from Barnwell (1967). 
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This is somewhat surprising, since the positioning of the shocks from smeared- 
out pressure distributions calls for a relatively subjective decision. 

The main virtue of Barnwell's approach is that it is no worse after the occur- 
rence of Mach reflexion than before, so that it yields an approximation to the 

A " 0  1.0 2.0 3.0 
t 

FIGURE 4. Stagnation-point pressure us. time. Solid curves from present results, 
dashed from Barnwell's (1967) results for case 1. 

t 

FIGURE 5. Standoff distance of reflected shock on axis of symmetry 219. time. Circles are 
Barnwell's (1967) data points for case 1. All other data are from present results. In case 1, 
dashed curve is from our 14-term continued-fraction, while the solid curve is from the 11-, 
12- and 13-term continued-fractions. 
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complete history of the flow development, all the way to  the final steady state. 
The present procedure, on the other hand, would have to be drastically modified 
(to incorporate a special analysis of the Mach reflexion process) in order to be 
completely valid beyond the time at which the assumed regular reflexion process 
becomes impossible. Since we are unable to describe the transition from regular 
to Mach reflexion analytically within the framework of inviscid flow theory, 
the best we can claim for our results is that they are valid a t  any point in the 
flow field so long as they are converging and until that point receives a signal 
that the transition has occurred. 

Number of terms retained in 
continued-fraction 

-----h---- Correct 
Case Quantity 7 9 11 13 resultt 

1 Stagnation point pressure 1.032 1.028 1.020 1.259 1.044 
Standoff distance 0.551 0.516 0.516 0,541 0.439 

2 Stagnation point pressure 1.011 1.004 0.535 1.057 1.044 
Standoff distance 1.82 1.88 1.89 1.88 1.93 

TABLE 3. Extrapolation of continued fractions to infinite time. 

t Determined analytically for steady-state stagnation-point pressure and from correln- 
tion formulas of Ambrosio & Wortman (1962) for ultimate standoff distance. 

I n  cases like 3 and 4, the flow velocities are always subsonic. Clearly every 
point in the flow field eventually learns of the occurrence of Mach reflexion 
in such cases. However, when the incident shock is sufficiently strong, as it is in 
cases 1 and 2, the flow behind the reflected shock can be shown to be supersonic 
relative to the body before regular reflexion becomes impossible. There are 
then large regions of the flow field, including the entire subsonic portion of the 
shock layer, which never know that Mach reflexion has occurred, and for which 
our solution is therefore valid so long as it is converging. Thus, while the data in 
the figures which refer to cases 3 and 4 have been (conservatively) terminated 
at the transition time, results are presented for cases 1 and 2 for times well 
beyond that at  which Mach reflexion must take place, even though we are un- 
able to describe the mechanics of the transition from regular reflexion. 

Of course, as noted previously, there is still an upper bound on the time for 
which our series solution is useful, because of the limited number of terms of the 
series which are accurately known to us. Nevertheless, it is a t  least amusing to  
attempt to extrapolate our results to infinite time so as to predict some of the 
characteristics of the final steady-state flow. Observing that successive trunca- 
tions of the continued fraction (8) alternately approach 0 and some finite value 
as  t --f 00, we can construct a sequence of approximants to the ultimate value of 
the associated function of time by considering only every other truncation. 
The results, displayed in table 3, indicate that roundoff errors prevent this from 
being a completely dependable procedure (note in particular the third entry 
in the third line), but that judicious examination of the results yields errors of 
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only a few per cent in the steady-state stagnation pressure and in the final stand- 
off distance. 

This research was performed at  Cornell University under Contract DAH 604- 
674-0044 with the U.S. Army Research Office (Durham). 
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